7.3 Разрушающее действие подводного взрыва
Физическая картина взрыва заряда ВВ в воде качественно мало отличается от взрыва в воздухе, так как вода и воздух являются сжимаемыми жидкостями. Однако численные характеристики отличаются от тех, которые были получены для воздуха из-за большой плотности и малой сжимаемости воды. Малая сжимаемость воды обусловлена тем, что она сжата очень большими силами взаимного притяжения молекул. Для воды межмолекулярное давление составляет 104 атм, т.е. соизмеримо с давлением взрыва. Начальное давление на фронте ударной волны уменьшается не так резко, как в воздухе и имеет порядок 105 атм. При взрыве тротила Р = 1,36105 атм, Р2 = 1,95105 атм. В виду малой сжимаемости воды плотность возрастает только в 1,5 раза.
В воде начальная скорость движения границы раздела сред существенно меньше начальной скорости ударной волны, поэтому ее фронт сразу же отрывается от продуктов взрыва. По мере распространения ударной волны ее параметры быстро уменьшаются. Так на расстоянии, равном двум радиусам приведенного заряда скорость перемещения границы раздела уменьшается в два раза и равна 2000 м/с, плотность равна 1,25 г/см3, равна 38 С. Ввиду малой сжимаемости температура растет мало, в основном энергия затрачивается на перемещение масс воды.
После отрыва ударной волны продукты детонации расширяются с начальной скоростью Vo = 2200…2500 м/с, которая постепенно убывает. Давление внутри газового пузыря также уменьшается и в какой-то момент упадет ниже гидростатического и газовый пузырь начнет сжиматься с постоянно возрастающей скоростью. С этого момента меняется направление движения жидкости и она устремляется к центру взрыва. Сжатие газового пузыря будет происходить до тех пор, пока давление внутри не уравновесится силами инерции потока и процесс начнется сначала.
Вторая фаза также сопровождается повышением давления. Обычно максимальное давление составляет 10% от первоначального. Так как фаза вторичного расширения гораздо больше по времени (меньше скорость), то удельные импульсы имеют один порядок. Изменение радиуса газового пузыря и давления в нем приведено на рисунок 7.11.
Rmax P
Пульсация газового пузыря
t t
Рисунок 7.11
Максимальный радиус газового пузыря можно определить по формуле
(7.40)
= 9,610-3 , – гидростатическое давление, - удельная энергия взрыва,
- масса ВВ.
При взрыве заряда тротила массой 100 кГ на глубине 100м максимальный радиус газового пузыря составляет 3,2 м.
Так как при взрыве в воздухе и в воде давление зависит от одних и тех же параметров, то можно воспользоваться формулой расчета перепада давления в воздухе
(7.41)
; = 104 атм.
Функцию на основании экспериментальных данных можно представить в виде
., где = 5,6510; n = 1,13 .
Подставим в уравнение отношения давлений
(7.42)
Подставив значение = 104 атм и величину удельной энергии взрыва тротила, получим
(7.43)
Для определения удельного импульса можно использовать формулу для расчета для воздушной ударной волны
(7.44)
Отсюда для тротила
(7.45)
- 1 Комплекс авиационного вооружения
- Краткая история развития авиационных боеприпасов.
- Системные требования к кав
- Явение взрыва
- Классификация взрывчатых веществ
- Удельная энергия вв
- 2.3 Температура взрыва
- Удельный объем продуктов взрыва
- 2.5 Давление продуктов взрыва
- 2.6 Чувствительность вв
- 2.6.1 Чувствительность к тепловому импульсу
- 2.6.2 Чувствительнось к удару
- 2.6.3 Критические напряжения
- 2.6.4 Чувствительность к детонационному импульсу
- 2.7 Стойкость вв
- 2.7.1 Методы испытания порохов на стойкость
- 2.8 Скорость детонации
- 2.9 Бризантное действие вв
- 2.10 Фугасное действие вв
- 2.11 Бризантные взрывчатые вещества (бвв)
- 2.11.1 Основные виды бвв Однородные бвв
- 2.12 Инициирующие взрывчатые вещества (ивв)
- 2.13 Метательные взрывчатые вещества
- 2.14. Пиротехнические взрвычатые вещества
- 3 Проникающее действие боеприпасов
- Удар о поверхность среды;
- Собственно проникание;
- Проникание при наличии откола или сквозное пробивание (при среде конечной толщины).
- 3.1 Проникание в сплошные среды
- В нашем случае ускорением свободного падения можно пренебречь, т.К.
- Ввиду того, что начальным участком можно пренебречь.
- 3.2 Пробитие многослойных преград
- 4 Бронебойное действие боеприпасов
- Коэффициент для гомогенной брони составляет 1600…2000, для гетерогенной – 2000…3000.
- 5 Проникание при высоких скоростях удара
- 6 Рикошетирование боеприпасов
- Отсюда, подставив в зачение , получим
- Смещение центра тяжести боеприпаса вперед.
- Притупление головной части или выемка в головной части.
- Применение тормозных устройств.
- 7 Фугасное действие боеприпасов
- Подставляя значение в выражение для скорости движения газов, получим
- 7.1 Параметры водушной ударной волны
- 7.2 Удельный импульс ударной волны. Общие принципы разрушающего действия при взрыве в воздухе
- 7.3 Разрушающее действие подводного взрыва
- 7.4 Взрыв заряда в грунте
- 7.5 Воронка в грунте
- 8 Кумулятивное действие боеприпасов
- 8.1 Физическая сущность кумулятивного действия
- 8.2 Гидродинамическая теория кумуляция.
- 8.3 Бронебойное и заброневое действие кумулятивных зарядов
- 8.4 Факторы, влияющие на кумулятивное действие
- 8.5 Особенности формирования и действия кумулятивных дально- бойных зарядов
- 9 Осколочное действие авиационных боеприпасов
- 9.1 Физическая картина взрыва заряда в оболочке
- 9.2 Закон дробления оболочки на осколки
- 9.3 Закон разлета осколков
- 9.4 Начальная скорость осколков
- 9.5 Баллистика осколков
- 9.6 Поражающее действие осколков
- 9.6.1. Пробивное действие осколков
- 10 Система авиационных боеприпасов
- 10.1 Боеприпасы бомбардировочного вооружения
- 10.2 Аэродинамические нагрузки, действующие на авиабомбу в свободном полете
- 10.3 Авиабомбы для бомбометания с малых и предельно малых высот
- 10.4 Авиабомбы на основе топливновоздушной смеси
- 10.5 Управляемые (корректируемые) авиационные бомбы
- 10.5.1. Классификация управляемых авиационных бомб
- 10.5.2. Состояние и тенденции развития уаб (каб)
- 10.5.3 Конструкция и принцип действия типовых образцов
- 10.5.3.1 Уаб с полуактивными лазерными системами наведения
- Семейство «Пейв Уэй-I»
- Семейство «Пейв Уэй-II»
- Семейство «Пейв Уэй-III»
- 10.5.4 Типовые схемы боевого применения уаб с лазерными сн
- 10.6 Уаб с телевизионными (тепловизионными) системами наведения
- 10.6.1 Типовые схемы боевого применения уаб с телевизионными сн в составе уак
- 11 Авиационное контейнерно-кассетное оружие
- 11.1 Несбрасываемые контейнеры
- 11.2 Управляемые кассетные системы.
- 11.3 Разовые бомбовые кассеты
- 12 Артиллерийские боеприпасы
- 12.1 Снаряды к авиационным пушкам.
- Корпус снаряда, 2 – ведущий поясок
- 12.2 Пули к авиационным пулеметам.
- 13 Неуправляемые авиационные ракеты
- – Эффективная скорость истечения
- 14 Авиационные взрыватели
- 14.1 Назначение и классификация взрывателей
- 14. 2 Авиационные взрыватели контактного и дистанционного действия
- 14.2.1 Классификация взрывателей контактного действия
- 14.2.2 Принципы устройства и действия основных механизмов контактных взрывателей механического типа
- 14.21. Схема противосъемного устройства
- 14.2.3 Особенности устройства и действия контактных взрывателей электрического типа
- 14.3 Авиационные взрыватели дистанционного действия
- 14.4 Авиационные неконтактные взрыватели
- 14.4.1. Общие сведения о неконтактных взрывателях, их классификация и основные характеристики
- 14.4.2 Неконтактные радиовзрыватели
- 14.4.2.1. Неконтактные рв доплеровского типа
- 14.4.2.2 Принцип действия импульсных рв
- 14.4.2.3 Принцип действия импульсно-доплеровских рв
- 14.4.2.4 Неконтактные оптические взрыватели
- Библиографический список