Подставляя значение в выражение для скорости движения газов, получим
(7.5)
Если воспользоваться основными формулами гидродинамической теории детонации
, и зависимостью скорости движения газов можно
найти начальную скорость перемещения границы раздела сред.
(7.6)
Как следует из этой формулы максимальная скорость истечения продуктов детонации . соответствует случаю разлета в пустоту ( .
В этом случае ударной волны не образуется.
(7.7)
Если показатель политропы положить равным 3, то , т.е. максимальная скорость разлета продуктов детонации равна скорости детонации.
Однако это противоречит опыту. Дело в том, что показатель политропы n = 3 справедлив только для сильно сжатых газов. При выходе газов на свободную поверхность давление в пустоте практически мгновенно падает до нуля. Так как зависимость неизвестна, то полагают, что на каком-то этапе остается справедливым уравнение политропы (n = 3), а при падении давления ниже . расширение происходит по адиабатному закону где = 1,2.
Найденные таким образом параметры ударных волн в воздухе, дают представление о параметрах продуктов детонации в момент их разлета с поверхности заряда (таблица 7.1).
Таблица 7.1
ВВ |
г/см3 |
км/с |
атм |
атм |
атм |
км/с |
км/с |
км/с |
|
Тротил | 1,6 | 7,0 | 196000 | 570 | 1450 | 6,45 | 7,1 | 10,5 | 2,20 |
Гексоген | 1,6 | 8,2 | 268000 | 760 | 1500 | 7,45 | 8,2 | 11,9 | 2,24 |
где: – начальная скорость ударной волны в воздухе;
- скорость разлета продуктов детонации в воздухе;
– начальное давление на границе раздела сред при разлете в возду- хе;
– давление на фронте детонационной волны.
При разлете продуктов детонации в воздухе в связи с тем, что начальное давление соизмеримо с , на начальном этапе можно положить, что
= 3 и величиной можно пренебречь ( 0,1).
Следовательно, максимальная скорость истечения продуктов детонации в воздух равна Отсюда при = 3 = C2 , тогда (7.8)
При определении скорости разлета с боковой поверхности заряда необходимо учитывать, что продукты детонации получили скорость в направлении движения фронта детонации, а истечение их со скоростью происходит перпендикулярно поверхности заряда (рисунок 7.4).
C2 U
U U
C2 C2
Рисунок 7.4
С боковой поверхности U = 0,8D; с левого торца U = 0,5D.
По аналогии можно определить направление разлета продуктов детонации с заряда произвольной формы (рисунок 7.5).
Взрывной луч С2
U
Точка инициирования
u2
u2
C2 U
Рисунок 7.5
- 1 Комплекс авиационного вооружения
- Краткая история развития авиационных боеприпасов.
- Системные требования к кав
- Явение взрыва
- Классификация взрывчатых веществ
- Удельная энергия вв
- 2.3 Температура взрыва
- Удельный объем продуктов взрыва
- 2.5 Давление продуктов взрыва
- 2.6 Чувствительность вв
- 2.6.1 Чувствительность к тепловому импульсу
- 2.6.2 Чувствительнось к удару
- 2.6.3 Критические напряжения
- 2.6.4 Чувствительность к детонационному импульсу
- 2.7 Стойкость вв
- 2.7.1 Методы испытания порохов на стойкость
- 2.8 Скорость детонации
- 2.9 Бризантное действие вв
- 2.10 Фугасное действие вв
- 2.11 Бризантные взрывчатые вещества (бвв)
- 2.11.1 Основные виды бвв Однородные бвв
- 2.12 Инициирующие взрывчатые вещества (ивв)
- 2.13 Метательные взрывчатые вещества
- 2.14. Пиротехнические взрвычатые вещества
- 3 Проникающее действие боеприпасов
- Удар о поверхность среды;
- Собственно проникание;
- Проникание при наличии откола или сквозное пробивание (при среде конечной толщины).
- 3.1 Проникание в сплошные среды
- В нашем случае ускорением свободного падения можно пренебречь, т.К.
- Ввиду того, что начальным участком можно пренебречь.
- 3.2 Пробитие многослойных преград
- 4 Бронебойное действие боеприпасов
- Коэффициент для гомогенной брони составляет 1600…2000, для гетерогенной – 2000…3000.
- 5 Проникание при высоких скоростях удара
- 6 Рикошетирование боеприпасов
- Отсюда, подставив в зачение , получим
- Смещение центра тяжести боеприпаса вперед.
- Притупление головной части или выемка в головной части.
- Применение тормозных устройств.
- 7 Фугасное действие боеприпасов
- Подставляя значение в выражение для скорости движения газов, получим
- 7.1 Параметры водушной ударной волны
- 7.2 Удельный импульс ударной волны. Общие принципы разрушающего действия при взрыве в воздухе
- 7.3 Разрушающее действие подводного взрыва
- 7.4 Взрыв заряда в грунте
- 7.5 Воронка в грунте
- 8 Кумулятивное действие боеприпасов
- 8.1 Физическая сущность кумулятивного действия
- 8.2 Гидродинамическая теория кумуляция.
- 8.3 Бронебойное и заброневое действие кумулятивных зарядов
- 8.4 Факторы, влияющие на кумулятивное действие
- 8.5 Особенности формирования и действия кумулятивных дально- бойных зарядов
- 9 Осколочное действие авиационных боеприпасов
- 9.1 Физическая картина взрыва заряда в оболочке
- 9.2 Закон дробления оболочки на осколки
- 9.3 Закон разлета осколков
- 9.4 Начальная скорость осколков
- 9.5 Баллистика осколков
- 9.6 Поражающее действие осколков
- 9.6.1. Пробивное действие осколков
- 10 Система авиационных боеприпасов
- 10.1 Боеприпасы бомбардировочного вооружения
- 10.2 Аэродинамические нагрузки, действующие на авиабомбу в свободном полете
- 10.3 Авиабомбы для бомбометания с малых и предельно малых высот
- 10.4 Авиабомбы на основе топливновоздушной смеси
- 10.5 Управляемые (корректируемые) авиационные бомбы
- 10.5.1. Классификация управляемых авиационных бомб
- 10.5.2. Состояние и тенденции развития уаб (каб)
- 10.5.3 Конструкция и принцип действия типовых образцов
- 10.5.3.1 Уаб с полуактивными лазерными системами наведения
- Семейство «Пейв Уэй-I»
- Семейство «Пейв Уэй-II»
- Семейство «Пейв Уэй-III»
- 10.5.4 Типовые схемы боевого применения уаб с лазерными сн
- 10.6 Уаб с телевизионными (тепловизионными) системами наведения
- 10.6.1 Типовые схемы боевого применения уаб с телевизионными сн в составе уак
- 11 Авиационное контейнерно-кассетное оружие
- 11.1 Несбрасываемые контейнеры
- 11.2 Управляемые кассетные системы.
- 11.3 Разовые бомбовые кассеты
- 12 Артиллерийские боеприпасы
- 12.1 Снаряды к авиационным пушкам.
- Корпус снаряда, 2 – ведущий поясок
- 12.2 Пули к авиационным пулеметам.
- 13 Неуправляемые авиационные ракеты
- – Эффективная скорость истечения
- 14 Авиационные взрыватели
- 14.1 Назначение и классификация взрывателей
- 14. 2 Авиационные взрыватели контактного и дистанционного действия
- 14.2.1 Классификация взрывателей контактного действия
- 14.2.2 Принципы устройства и действия основных механизмов контактных взрывателей механического типа
- 14.21. Схема противосъемного устройства
- 14.2.3 Особенности устройства и действия контактных взрывателей электрического типа
- 14.3 Авиационные взрыватели дистанционного действия
- 14.4 Авиационные неконтактные взрыватели
- 14.4.1. Общие сведения о неконтактных взрывателях, их классификация и основные характеристики
- 14.4.2 Неконтактные радиовзрыватели
- 14.4.2.1. Неконтактные рв доплеровского типа
- 14.4.2.2 Принцип действия импульсных рв
- 14.4.2.3 Принцип действия импульсно-доплеровских рв
- 14.4.2.4 Неконтактные оптические взрыватели
- Библиографический список