Проникание при наличии откола или сквозное пробивание (при среде конечной толщины).
Первый этап - соударение со средой и проникание на глубину, равную длине головной части. Этот этап характеризуется переменной площадью контакта снаряда со средой и переменной скоростью его движения в среде. При внедрении снаряда в грунт на глубину его головной части скорость падает не более, чем на 5...6%. При этом сила сопротивления достигает максимума за счет увеличения площади контакта. Во время удара формируется волна сжатия (ударная волна) наибольшей интенсивности. В результате отражения волны от поверхности раздела будет происходить отрыв частиц хрупкой или жидкой среды. При этом формируется всплеск среды и образуется воронка (кратер), размеры которого зависят от параметров снаряда, скорости встречи и свойств среды. Волна разряжения от свободной поверхности вязкой (пластичной) среды приводит к смещению частиц среды и на ее поверхности у проникающего тела образуется валик (рисунок 3.2).
Рисунок 3.2
На втором этапе проникания площадь контакта снаряда со средой (при
= 0) будет постоянной. Однако, скорость снаряда в процессе проникания будет уменьшаться, в связи с чем сила сопротивления движению снаряда также будет уменьшаться. За снарядом образуется проход.
Для сред конечных размеров (преград), если скорость снаряда достаточно велика, следует рассматривать и третий этап - сквозное пробитие.
преград, сопротивление разрыву которых меньше сопротивления сжатия (чугун, бетон, цементированные стали) образовавшаяся ударная волна сжатия, достигнув тыльной поверхности преграды и отражаясь от нее волной разряжения может вызвать откол среды (рисунок 3.3).
волна разряжения волна сжатия
откол
Рисунок 3.3
Рассмотрим схему сил, действующих на снаряд при проникании в сплошные среды (рисунок 3.4).
Цм
М
цд
V
Рисунок 3.4
Равнодействующая сила приложена в центре давления, который расположен впереди центра масс. Приведем к центру масс, введя опрокидывающий момент М.
В общем случае силу сопротивления Fx можно представить в виде суммы трех сил
(3.1)
- сила динамического сопротивления, вызванная инерцией частиц среды, приводимых в движение при проникании снаряда, и пропорциональная квадрату скорости.
(3.2)
- коэффициент, зависящий от формы головной части и угла атаки,
- плотность среды,
- площадь поперечного сечения снаряда.
- сила вязкого сопротивления, возникающая в результате преодоления трения между частицами среды и пропорциональная скорости проникновения.
(3.4)
- коэффициент, зависящий от формы головной части.
- коэффициент вязкости среды.
- диаметр снаряда.
- сила статического сопротивления, величина которой характеризует прочность среды и не зависит от скорости проникания.
- коэффициент, зависящий от формы головной части.
- площадь поперечного сечения снаряда.
- предел прочности среды на раздавливание.
Эта формула впервые была предложена Г.И.Покровским. Н.А.Забудским была предложена двухчленная формула для силы сопротивления.
(3.5)
Обозначив и , получим формулу Забудского для
силы сопротивления среды.
(3.6) - коэффициент, зависящий от формы головной части.
В этой формуле не учитывается сила вязкого сопротивления. Это не приводит к большим ошибкам, т.к. малых значениях скорости движения сила вязкого сопротивления существенно меньше силы статического сопротивления , а при больших скоростях она становится меньше, чем сила динамического сопротивления .
- 1 Комплекс авиационного вооружения
- Краткая история развития авиационных боеприпасов.
- Системные требования к кав
- Явение взрыва
- Классификация взрывчатых веществ
- Удельная энергия вв
- 2.3 Температура взрыва
- Удельный объем продуктов взрыва
- 2.5 Давление продуктов взрыва
- 2.6 Чувствительность вв
- 2.6.1 Чувствительность к тепловому импульсу
- 2.6.2 Чувствительнось к удару
- 2.6.3 Критические напряжения
- 2.6.4 Чувствительность к детонационному импульсу
- 2.7 Стойкость вв
- 2.7.1 Методы испытания порохов на стойкость
- 2.8 Скорость детонации
- 2.9 Бризантное действие вв
- 2.10 Фугасное действие вв
- 2.11 Бризантные взрывчатые вещества (бвв)
- 2.11.1 Основные виды бвв Однородные бвв
- 2.12 Инициирующие взрывчатые вещества (ивв)
- 2.13 Метательные взрывчатые вещества
- 2.14. Пиротехнические взрвычатые вещества
- 3 Проникающее действие боеприпасов
- Удар о поверхность среды;
- Собственно проникание;
- Проникание при наличии откола или сквозное пробивание (при среде конечной толщины).
- 3.1 Проникание в сплошные среды
- В нашем случае ускорением свободного падения можно пренебречь, т.К.
- Ввиду того, что начальным участком можно пренебречь.
- 3.2 Пробитие многослойных преград
- 4 Бронебойное действие боеприпасов
- Коэффициент для гомогенной брони составляет 1600…2000, для гетерогенной – 2000…3000.
- 5 Проникание при высоких скоростях удара
- 6 Рикошетирование боеприпасов
- Отсюда, подставив в зачение , получим
- Смещение центра тяжести боеприпаса вперед.
- Притупление головной части или выемка в головной части.
- Применение тормозных устройств.
- 7 Фугасное действие боеприпасов
- Подставляя значение в выражение для скорости движения газов, получим
- 7.1 Параметры водушной ударной волны
- 7.2 Удельный импульс ударной волны. Общие принципы разрушающего действия при взрыве в воздухе
- 7.3 Разрушающее действие подводного взрыва
- 7.4 Взрыв заряда в грунте
- 7.5 Воронка в грунте
- 8 Кумулятивное действие боеприпасов
- 8.1 Физическая сущность кумулятивного действия
- 8.2 Гидродинамическая теория кумуляция.
- 8.3 Бронебойное и заброневое действие кумулятивных зарядов
- 8.4 Факторы, влияющие на кумулятивное действие
- 8.5 Особенности формирования и действия кумулятивных дально- бойных зарядов
- 9 Осколочное действие авиационных боеприпасов
- 9.1 Физическая картина взрыва заряда в оболочке
- 9.2 Закон дробления оболочки на осколки
- 9.3 Закон разлета осколков
- 9.4 Начальная скорость осколков
- 9.5 Баллистика осколков
- 9.6 Поражающее действие осколков
- 9.6.1. Пробивное действие осколков
- 10 Система авиационных боеприпасов
- 10.1 Боеприпасы бомбардировочного вооружения
- 10.2 Аэродинамические нагрузки, действующие на авиабомбу в свободном полете
- 10.3 Авиабомбы для бомбометания с малых и предельно малых высот
- 10.4 Авиабомбы на основе топливновоздушной смеси
- 10.5 Управляемые (корректируемые) авиационные бомбы
- 10.5.1. Классификация управляемых авиационных бомб
- 10.5.2. Состояние и тенденции развития уаб (каб)
- 10.5.3 Конструкция и принцип действия типовых образцов
- 10.5.3.1 Уаб с полуактивными лазерными системами наведения
- Семейство «Пейв Уэй-I»
- Семейство «Пейв Уэй-II»
- Семейство «Пейв Уэй-III»
- 10.5.4 Типовые схемы боевого применения уаб с лазерными сн
- 10.6 Уаб с телевизионными (тепловизионными) системами наведения
- 10.6.1 Типовые схемы боевого применения уаб с телевизионными сн в составе уак
- 11 Авиационное контейнерно-кассетное оружие
- 11.1 Несбрасываемые контейнеры
- 11.2 Управляемые кассетные системы.
- 11.3 Разовые бомбовые кассеты
- 12 Артиллерийские боеприпасы
- 12.1 Снаряды к авиационным пушкам.
- Корпус снаряда, 2 – ведущий поясок
- 12.2 Пули к авиационным пулеметам.
- 13 Неуправляемые авиационные ракеты
- – Эффективная скорость истечения
- 14 Авиационные взрыватели
- 14.1 Назначение и классификация взрывателей
- 14. 2 Авиационные взрыватели контактного и дистанционного действия
- 14.2.1 Классификация взрывателей контактного действия
- 14.2.2 Принципы устройства и действия основных механизмов контактных взрывателей механического типа
- 14.21. Схема противосъемного устройства
- 14.2.3 Особенности устройства и действия контактных взрывателей электрического типа
- 14.3 Авиационные взрыватели дистанционного действия
- 14.4 Авиационные неконтактные взрыватели
- 14.4.1. Общие сведения о неконтактных взрывателях, их классификация и основные характеристики
- 14.4.2 Неконтактные радиовзрыватели
- 14.4.2.1. Неконтактные рв доплеровского типа
- 14.4.2.2 Принцип действия импульсных рв
- 14.4.2.3 Принцип действия импульсно-доплеровских рв
- 14.4.2.4 Неконтактные оптические взрыватели
- Библиографический список