logo
Радиопротекторы: современные направления и перспективы

КЛАССИФИКАЦИЯ И ХАРАКТЕРИСТИКА РАДИОЗАЩИТНЫХ ВЕЩЕСТВ

Радиозащитный эффект обнаружен у целого ряда веществ различной химической структуры. Поскольку эти разно-родные соединения обладают самыми различными, подчас противоположными свойствами, их трудно разделить по фармакологическому действию. Для проявления радиоза-щитного эффекта в организме млекопитающего в боль-шинстве случаев достаточно однократного введения радиопротекторов. Однако имеются и такие вещества, которые повышают радиорезистентность лишь после повторного введения. Различаются радиопротекторы и по эффективно-сти создаваемой ими защиты. Существует, таким образом, множество критериев, по которым их можно классифи-цировать.

С практической точки зрения радиопротекторы целесо-образно разделить по длительности их действия, выделив вещества кратковременного и длительного действия.

1. Радиопротекторы или комбинация радиопротекторов, обладающих кратковременным действием (в пределах не-скольких минут или часов), предназначены для однократ-ной защиты от острого внешнего облучения. Такие веще-ства или их комбинации можно вводить тем же особям и повторно. В качестве средств индивидуальной защиты эти вещества могут найти применение перед предполагае-мым взрывом ядерного оружия, вхождением в зону ра-диоактивного загрязнения или перед каждым радиотера-певтическим местным облучением. В космическом про-странстве они могут быть использованы для защиты космонавтов от облучения, вызванного солнечными вспыш-ками.

2. Радиозащитные вещества длительного воздействия предназначены для более продолжительного повышения радиорезистентности организма. Для получения защитного эффекта, как правило, необходимо увеличение интервала после введения таких веществ примерно до 24 ч. Иногда требуется повторное введение. Практическое применение этих протекторов возможно у людей, работаю-щих с ионизирующим излучением, у космонавтов при дол-говременных космических полетах, а также при длитель-ной радиотерапии. К таким препаратам относятся некоторые алкалоиды и другие природные БАВ. Из синтетических веществ это некоторые противоопухолевые препараты. На сегодняшний день их насчитывается гораздо меньше, чем радиопротекторов кратковременного действия и большая их часть находится в стадии разработки и клинических испытаний, поэтому информации о них крайне мало. Поиск новых радиопротекторов длительного действия - важнейшая перспектива.

Поскольку протекторы кратковременного защитного действия чаще всего относятся к веществам химической природы, говорят о химической радиозащите.

С другой стороны, длительное защитное действие воз-никает после введения веществ в основном биологического происхождения; это обозначают как биологическую радио-защиту.

Требования к радиопротекторам зависят от места при-менения препаратов; в условиях больницы способ введе-ния не имеет особого значения. В большинстве случаев требования должны отвечать задачам использования радиопротекторов в качестве индивидуальных средств защиты. Согласно Саксонову и соавт. (1976) эти требования должны быть как минимум следующими:

-- препарат должен быть достаточно эффективным и не вызывать выраженных побочных реакций;

-- действовать быстро (в пределах первых 30 мин) и сравнительно продолжительно (не менее 2 ч);

-- должен быть нетоксичным с терапевтическим ко-эффициентом не менее 3;

-- не должен оказывать даже кратковременного отри-цательного влияния на трудоспособность человека или ослаблять приобретенные им навыки;

-- иметь удобную лекарственную форму: для перорального введения или инъекции шприц-тюбиком объемом не более 2 мл;

-- не должен оказывать вредного воздействия на орга-низм при повторных приемах или обладать кумулятивны-ми свойствами;

-- не должен снижать резистентность организма к дру-гим неблагоприятным факторам внешней среды;

-- препарат должен быть устойчивым при хранении, сохранять свои защитные и фармакологические свойства не менее 3 лет.

Менее строгие требования предъявляются к радиопро-текторам, предназначенным для использования в радио-терапии. Они усложняются, однако, важным условием -- необходимостью дифференцированного защитного дейст-вия. Следует обеспечить высокий уровень защиты здоровых тканей и минимальный -- тканей опухоли. Такое раз-граничение позволяет усилить действие местно применен-ной терапевтической дозы облучения на опухолевый очаг без серьезного повреждения окружающих его здоровых тканей.

РАДИОЗАЩИТНЫЕ ВЕЩЕСТВА КРАТКОВРЕМЕННОГО ДЕЙСТВИЯ

К ним относятся разные типы химических соединений. Их классификация по химической структуре и предпола-гаемому механизму действия впервые дана в монографии Бакк (1965), а позже -- в работе Суворова и Шашкова (1975). В 1979 г. Суини опубликовал обзор химических радиопротекторов, изученных в рамках обширной иссле-довательской программы вооруженных сил США. В радио-биологических лабораториях Армейского исследователь-ского института им. Уолтера Рида в Вашингтоне, а также в целом ряде американских университетов в 1959--1965 гг. испытано около 4400 различных химических веществ. По-мимо этого, в радиационной лаборатории ВВС США в Чикаго было проверено радиозащитное действие еще 1500 веществ.

В результате проведенного анализа к клиническому применению была рекомендована небольшая группа пре-паратов, прежде всего вещество, обозначенное WR-2721. Речь шла о производном тиофосфорной кислоты, названном также гаммафосом. Оно относится к большой группе серосодержащих радиопротекторов.

Современные наиболее эффективные радиопротекторы делятся на две основные группы:

а) серосодержащие радиозащитные вещества;

б) производные индолилалкиламинов.

Серосодержащие радиозащитные вещества.

К числу наиболее важных из них с точки зрения возмож-ного практического использования относятся цистеамин, цистамин, аминоэтилизотиуроний, гаммафос, затем цистафос, цитрифос, адетурон и меркаптопропионилглицин (синтезы см. в приложении).

Цистеамин. Это аминоэтиол, -меркаптоэтиламин, в специальной литературе часто сокращенно обозначаемый МЭА; он имеет химическую формулу:

HS--СН2--СН2--NH2.

Цистеамин представляет собой сильное основание. Его относительная молекулярная масса 77. Он образует соли с неорганическими и органическими кис-лотами. Температура плавления 96°С, рН водного раство-ра 8,4. Все соли МЭА, за исключением салицилатов, барбитуратов и фосфатов, гигроскопичны. Из них чаще всего используются гидрохлорид и оксалат. Гидрохлорид цистеамина -- белое кристаллическое вещество со специфиче-ским неприятным запахом меркаптана, хорошо раствори-мое в воде; температура плавления 70--72 °С. Водные рас-творы дают кислую реакцию, рН 3,5--4,0. Температура плавления сукцината МЭА 146--148 °С, рН водного рас-твора 7,3.

Аминоалкилтиолы являются сильными восстановителя-ми, они легко окисляются кислородом воздуха и различ-ными слабыми окислителями, в том числе трехвалент-ным железом, и образуют дисульфиды. Скорость окисления аминоалкилтиолов на воздухе и в водных растворах зависит от рН среды, температуры и присутствия ионов меди и железа. С увеличением рН, температуры и коли-чества ионов в среде скорость окисления возрастает. Силь-ные окислители могут окислить тиолы до производных сульфиновых или сульфоновых кислот.

Радиозащитное действие цистеамина открыли ученый Бакк и соавторы в 1951 году в Институте фармакологии лютеранского университета в Бельгии.

Цистамин. Он представляет собой меркаптоэтиламин с химической формулой

S-- СН2-- СН2--NH2.

|

S-- СН2-- СН2--NH2.

Цистамин -- белое кристаллическое вещество, плохо рас-творимое в воде, но хорошо -- в спирте, бензоле и других органических растворителях; относительная молекулярная масса 152. Он обладает свойствами осно-вания, с кислотами образует соли, из которых наиболее часто используется дигидрохлорид цистамина. Это также белое кристаллическое вещество, гигроскопичное, легко растворимое в воде, трудно растворимое в спирте. Водные растворы дигидрохлорида цистамина имеют довольно кислую реакцию, рН око-ло 5,5.

МЭА и цистамин синтезировал ученый Габриель еще в 1889 г. Радиозащитное действие цистамина впервые описали Бакк и соавторы (1951).

Аминоэтилизотиуроний. Это -- производное тиомочевины, S-2-аминоэтилизотиомочевина, чаще всего используе-мая в форме бромида гидробромида. Химическая формула АЭТ

H2N--СН2--СН2--S--C--NH2

||

NH

Его относительная молекулярная масса 119. Бромистая соль АЭТ--белое кристаллическое ве-щество, гигроскопичное, горькое на вкус, нестабильное на свету, хорошо растворимое в воде, практически нераство-римое в спирте. Водные растворы имеют кислую реакцию. В нейтральном растворе АЭТ превращается в 2-меркаптоэтилгуанидин (МЭГ), нестабильный in vitro и легко окис-ляющийся до дисульфида.

Данные о радиозащитном действии АЭТ первыми опуб-ликовали американские радиобиологи из Окриджа Догерти и Барнетт в 1955 г. При введении АЭТ в дозах 250 -- 450 мг/кг выживали 80% летально облученных мышей (ЛД94). Описание синтеза АЭТ дали в 1957 г. Шапира и соавт. Независимо от этих данных в 1954 г. АЭТ синте-зировал советский ученый В. Д. Ляшенко. В опытах Семе-нова в 1955 г. после введения АЭТ в дозе 150 мг/кг вы-живали лишь 18% летально облученных мышей, что зна-чительно меньше, чем при применении цистамина. По этой причине данному протектору не придали тогда большого значения.

Гаммафос. Он представляет собой аминоалкилпроизводное тиофосфорной кислоты, точнее S-2-(3-аминопропиламино) этиловый эфир тиофосфорной кислоты. Его хими-ческая формула

O ОН

|| ?

H2N--СН2--СН2--СН2--NH--СН2--СН2--S--Р -- ОН

Это -- белое кристаллическое вещество, довольно хорошо растворимое в воде, с резким чесночным запахом. Тем-пературу плавления определили Свердлов и соавт. (1974) в интервале от 145 до 147 °С.

О синтезе гаммафоса сообщили в 1969 г. Пайпер и соавт. В том же году радиозащитное действие гаммафоса у мы-шей описали Юхас и Сторер.

Из группы производных тиофосфорной кислоты боль-шое внимание уделяется защитному действию цистафоса (WR-638) S-2-аминоэтилтиофосфорной кислоты.

О

||

H2N-- СН2-- СН2-- S-- Р-- ОН.

|

ОН

В 1959 г. это вещество синтезировал Акерфилдт. Одно-временно было описано его радиозащитное действие. Оно особенно эффективно при нейтронном облучении мышей.

Интересные малотоксичные вещества синтезировали ученый Пантев и соавторы в 1973г. Путем соединения цистеамина с аденозинтрифосфатом (АТФ) было создано эффективное защитное средство цитрифос, а соединением молекул АЭТ и АТФ -- радиозащитное вещество адетурон. Последнее эффективно и в случае пролонгированного облучения низ-кой мощности.

Значительный интерес радиобиологов вызывает 2-меркаптопропионилглицин, сокращенно обозначаемый МПГ. Он представляет собой нетоксичное радиозащитное ве-ществ. Защитная доза МПГ была определена у мышей -- 20 мг/кг при внутрибрюшинном введении, тогда как средняя летальная доза препарата достигает 2100 мг/кг. Многие соврменные ученые считают это вещество, наряду с гаммафосом, наи-более перспективным из всех серосодержащих радиопро-текторов для клинического применения.

Производные индолилалкиламинов

Основными представителями этой группы химических ра-диопротекторов являются серотонин и мексамин. Оба ве-щества -- производные триптамина.

Серотонин. В химическом отношении серотонин пред-ставляет собой 5-гидрокситриптамин (5-ГТ).

Серотонин обладает амфотерными свойствами. В физио-логических условиях ведет себя как основание и только при рН > 10 обнаруживает свойства кислоты. Не-связанный серотонин легко растворяется в воде и с тру-дом -- в органических растворителях. Он легко кристалли-зуется до белой кристаллической соли в форме креатининсульфата, относительная молекулярная масса которого составляет 405,37. Из-за значительной нестабильности рас-творов необходимо постоянно готовить свежие растворы серотонина, предохранять их от света и высокой темпера-туры.

Радиозащитное действие серотонина было описано еще в 1952 г. сотрудниками двух лабораторий независимо друг от друга (Бакк, Герви; Грай и соавторы).

Мексамин. Его химическая формула очень близка к формуле серотонина. Мексамин является 5-метокситриптамином, сокращенно 5-МОТ.

Мексамин легко образует соли. Чаще всего применяется гидрохлорид 5-метокситриптамина. Это белое кристалли-ческое вещество, хорошо растворимое в воде, с температу-рой плавления 240--243 °С и относительной молекулярной массой 226,72.

Радиозащитное действие мексамина впервые описали Красных и соавт. (1962).

Главным основанием для разделения химических ра-диопротекторов кратковременного действия на две группы служит различие в химической структуре веществ; другое важное основание -- представление о различных механиз-мах их действия. Схематично можно представить, что радиозащитное действие серосодержащих веществ реали-зуется в зависимости от достигнутой концентрации их в клетках радиочувствительных тканей, тогда как производ-ные индолилалкиламинов повышают радиорезистентность тканей и всего организма млекопитающего главным обра-зом благодаря развитию гипоксии вследствие сосудосу-живающего фармакологического действия серотонина и мексамина. (Далее об этом будет упомянуто).

Представление о разных механизмах радиозащитного действия двух типов протекторов потребовало подтверж-дения защитного эффекта комбинаций различных протек-торов. Их вводили одновременно в одном растворе (кок-тейле) либо отдельными порциями одним и тем же или разными способами. Таким образом создалась третья боль-шая группа -- комбинации радиопротекторов, также пред-назначенные для однократной и кратковременной защиты от облучения.

Комбинации радиозащитных веществ

Обычно испытывается радиозащитное действие двухком-понентных комбинаций, однако не составляют исключе-ния и многокомпонентные рецептуры. Все комбинации ис-пытываются с тем, чтобы свести к приемлемому минимуму дозу отдельных компонентов с целью ослабления их неже-лательного побочного действия и достижения наибольше-го защитного эффекта.

Чаще всего комбинация защитных веществ вводится в одном растворе и одним способом. Однако описаны со-четания различных способов парентерального введения либо перорального и парентерального введения разных радиопротекторов. При этом все компоненты не должны вводиться одновременно, а лишь через определенные ин-тервалы.

Комбинация серосодержащих протекторов и производ-ных индолилалкиламинов. Двухкомпонентная рецептура протекторов с разными механизмами действия логически оправдана. Уже в конце 50-х годов был испытан ряд комбинаций серосодержащих протекторов с индолилалкиламинами. Одна из первых комбинаций такого рода, состоя-щая из цистеина и триптамина, была испытана Романцевым и Савичем в 1958 г. Если при использовании отдель-ных протекторов перед летальным общим облучением выживало 20--30% крыс, то совместное применение этих протекторов повышало выживаемость животных до 70%.

За этим исследованием последовал анализ целого ряда двухкомпонентных рецептур протекторов из обеих основных групп химических радиозащитных ве-ществ.

В большинстве рецептур дозы отдельных компонентов подбирались опытным путем в течение нескольких лет. Затем стали применять фармакологический метод. Первоначально таким методом определяли количественные соотношения токсичности и защитного действия комбинаций радиопротекторов. Таким путем можно оценить, наблюдается ли в комбинациях синергизм защитного действия лишь аддитивного или же потенцирующего характера, повышается или снижается токсичность протекторов при их совместном или раздель-ном применении.

Совместное введение различных серосодержащих ра-диопротекторов. Первую комбинацию цистеина и цисте-амина предложили Штраубе и Патт еще в 1953 г. При вве-дении оптимальных защитных доз этих протекторов в половинном размере авторы установили суммацию защит-ного действия.

Однако многие ученые не отмечали после внутрибрюшинного введения мышам комбинации АЭТ с цистеамином или цистамином существенного усиления за-щитного эффекта. Одновре-менное пероральное введение цистамина и АЭТ подтвер-дило только аддитивность защитного действия отдельных компонентов. Комбинации АЭТ с гаммафосом и АЭТ с цистафосом позволяют снизить эффективные дозы даже 4-кратно по сравнению со столь же эффективными защит-ными дозами отдельно примененных протекторов.

Поскольку раздельное применение эффективных доз се-росодержащих радиопротекторов вызывает нежелательные фармакологические эффекты, то одной из основных задач радиобиологии в аспекте данной тематики является изучение этих комбинаций с целью минимизации нежелательных про-явлений. Сделать это довольно трудно, ибо побочное дей-ствие серосодержащих радиопротекторов не слишком ха-рактерно. К таким проявлениям относятся тошнота, рвота, снижение артериального давления, брадикардия и др.

Многокомпонентные комбинации радиопротекторов. В конце 60-х годов защитное действие многокомпонент-ных комбинаций радиопротекторов в эксперименте на мы-шах проверено Майсином и Мэттелином (1967), Майсином и Лэмбайтом (1967), Майсином и соавторами (1968). Они внутрибрюшинно вво-дили АЭТ, глутатион, серотонин и цистеин либо вместе, либо в разных З-компонентных вариантах, иногда в сочетании с пострадиационной трансплантацией костного мозга.

Ранее, еще в 1962 г., Вонг и Керейакис опубликовали сообщение о защитном эффекте однократного совместного введения АЭТ, цистеамина и серотонина супралетально облученным мышам. Внутрибрюшинное введение комби-нации АЭТ, МЭА и 5-ГТ оказалось высокоэффективным и при тотальном облучении крыс.

Значительный эффект дала также З-компонентная ком-бинация мексамина, АЭТ и цистафоса, детально проанализированная Пугачевой и соавторами (1973). Если в этой рецептуре цистафос заменялся цистамином, она становилась еще более эффективной.

Как сообщил ученый Шмидт (1965), американским астронав-там назначалась комбинация радиопротекторов, составлен-ная из 7 компонентов: резерпина, серотонина, АЭТ, цисте-амина, глутатиона, парааминопропиофенона и хлорпромазина.

Пероральное совместное введение трех серосодержащих радиопротекторов (гаммафоса, цистафоса и АЭТ) обладает главным образом тем преимуществом, что их комбинация, по эффективности примерно равная каждой дозе отдельных компонентов, оказывается по сравнению с ними менее токсичной и, следовательно, более безопас-ной.

Химические радиопротекторы и гипоксия

Значительное снижение биологического воздействия иони-зирующего излучения под влиянием общей гипоксии отно-сится к основным представлениям в радиобиологии (свод-ка данных). Например, по данным Вацека и соавт. (1971), уменьшение содержания кислорода в окружающей среде до 8% во время облучения увеличи-вает среднюю летальную дозу у мышей на 3--4 Гр. Снижение уровня кислорода до 9,2--11% не приводит к повышению выживаемости мышей, подвергавшихся супралетальному воздействию гамма-излучения в дозе 14,5-15 Гр. Оно выявляется лишь после уменьшения содержа-ния кислорода до 6,7%. Повышение радиорезистентности организма млекопитающего под влиянием химических радиопротекторов в ус-ловиях общей гипоксии, имеет не только практическое значение. Оно доказывает, что гипоксия -- не единствен-ный механизм защитного действия.

Усиление защитного действия цистеина в условиях ги-поксии отметили в 1953 г. Майер и Патт. В отношении цис-теамина и цистамина эти данные подтвердили Девик и Лоте (1955), позже--Федоров и Семенов (1967). Соче-тание индолилалкиламиновых протекторов, гипоксический механизм радиозащитного действия которых считается ре-шающим, с внешней гипоксией, вопреки ожиданиям, так-же превысило радиозащитный эффект одной гипоксии.

Возможность защиты организма с помощью локаль-ной гипоксии костного мозга путем наложения жгута на задние конечности мыши впервые установили Жеребченко и соавт. (1959, 1960). У крыс это наблюдение под-тверждено Водиком (1970), у собак--Ярмоненко (1969).

В опытах на мышах Баркая и Семенов показали (1967), что локальная гипоксия костного мозга после перевязки одной задней конечности, не дающей выраженного за-щитного эффекта при летальном облучении в дозах 10,5 и 11,25 Гр, в комбинации с цистамином обусловливает эф-фективную защиту. Точно так же Ярмоненко (1969) от-метил суммацию радиозащитного эффекта после наложе-ния жгута и введения цистеамина мышам. Защитный эффект мексамина не повысился при одновременном на-ложении зажимной муфты. После введения цистамина крысам с ишемизированными задними конечностями Водик (1971) получил суммацию эффекта и 100% выжи-вание животных при абсолютно летальном в иных усло-виях гамма-облучении.